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Abstract

The problem of differentiating spectral data to yield the third and fourth derivatives is converted into one of solving an integral equation of
the first kind. This equation is solved by Tikhonov regularization. The method of General Cross Validation is used to guide the choice of the
regularization parameter that keeps noise amplification under control. The performance of this route to third and fourth derivative spectra is
demonstrated by applying it to a number of published spectra. A computational problem associated with General Cross Validation has bee
identified.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction of applications, over five hundreds, reported by Talgky
who also provided a thorough discussions of the various
The spectrum of a substance can take the form of a smoothaspects of derivative spectroscopy. More recently, Kesia
featureless curve or one with a number of near overlapping [2] reviewed the applications and developments in derivative
peaks. In either case, it is difficult to relate the spectral data spectroscopy. The computation and applications of higher
qualitatively or quantitatively to the chemical constituents of derivative spectra, with special reference to the fourth deriva-
the substance and their concentrations. A variety of data pro-tive, have been reviewed by Antonf8] and Lange and Balny
cessing techniques have been developed aimed at revealingd]. Butler[5] provided an earlier review of fourth derivative
the key features hidden in such spectra. Derivative spec-spectroscopy.
troscopy is a popular technique used to enhance these hidden A vast variety of methods have been developed to con-
featureq1]. Here the recorded spectral data is differentiated vert as measured spectral data into derivative spectra. Most
with respect to wavelength or wave number. The locations of methods are general in that they can be applied to differ-
the spectral peaks, including some of the hidden ones, will ent types of spectra, ranging from ultraviolet and visible
show up clearly as the zero-crossing points in the first (and spectra to FTIR spectra and emission spectra such as induc-
third) derivative. Maxima and minima of the spectrum will tively coupled plasma atomic emission spectra. In most of
appear as sharpened peaks and troughs in the even derivativahe earlier investigations spectral differentiation is performed
with the maxima and minima inverted in the second (and the by specialized electronic hardware. Since the introduction
sixth) derivative and re-inverted in the fourth (and the eighth) of spectrometers interfaced with computers, these hardware
derivative. Features such as “shoulders” in the original spec- have essentially been replaced by software that generates
tral data will also show up as peaks in higher derivatives. The the derivatives by different numerical techniques. Irrespec-
general applicability of derivative spectroscopy, particularly tive of the method adopted or the nature of the spectra in
the higher derivatives, can be seen from the large numberquestion, computation of derivative spectra has a major dif-
ficulty. Differentiation is an inherently ill-posed operation
* Corresponding author, Fax: +61 3 8344 4153. in that it amplifies the unavoidable noise in the spectrum.
E-mail address: yly@unimelb.edu.au (Y.L. Yeow). Noise amplification becomes more serious as the order of
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the derivative is increased. Naive methods of performing spectra. The computed derivative spectra will be compared
numerical differentiation without taking precaution to sup- against that generated by the SG method and that by other
press noise will lead to firstand second derivative spectra with methods reported in the literature.
greatly increased noise-to-signal ratio compared to that in  Since the development of the integral equation for the
the original spectrum. Further differentiation will often result fourth derivative spectrum and its solution by Tikhonov reg-
in third and fourth derivative spectra that are dominated by ularization follow closely the steps described by Yeow and
noise. Leong[7], only a brief description of these steps, highlighting

A landmark development in derivative spectroscopy is the the new developments, will be included in this paper.
paper of Savitzky and Golay (S@] in 1964 in which they
described a computationally very efficient method that simul-
taneously smoothes the measured spectrum and generates Governing equations
the derivatives required. The SG method can now be found
in most of the software that accompany the present genera-=.1. Integral equation for fourth derivative spectra
tion of spectrometers. In this method, polynomials, typically
fourth to eighth order, are fitted locally to each of the internal ~ Let A(L) represent a general spectrum a#igl denote
points of a spectral data set together with a selected numbethe spectral value at the arbitrary reference wavelength
of its neighbouring points, typically 5-11 or more points, on Ao—usually taken to be the lowest wavelength in a set of
either side. The fitted polynomials are then differentiated ana- recorded spectral data(x) can then be related to the fourth
lytically to give the derivative at each of the internal point. In  derivative spectrum and spectral properties@by a four-
principle, this differentiation can be performed as many times term Taylor series expansion abadugt
as required to generate the desired order of derivative. Since N
locally fitted polynomials do not have continuous derivative AC() = }/ O — A’)3h(k’)dk’ + Ao+ (h — 2o)ro

2

from one point to the next, in practice noise amplification 6 Ju=io
usually reaches an unacceptable level at the third and fourth
vt : ; : (» — 1) (r — 20
derivatives. To overcome this problem, some investigators + fo+ 0 (1)

apply the SG method to smooth the lower order derivatives, 2 6
usually the firstor second, and then differentiate the smoothedThe first term on the RHS is the remainder term, expressed
derivatives to generate the higher derivatives. While this as an integral, of the Taylor’s serif0]. Eq.(1) is an exact
will suppress noise but it is also just as likely to filter out expression fortC(1). Superscript C is used here to distin-
some of the essential features hidden in the original spectralguish the computed spectrum from the experimentally mea-
data. sured spectral data which will carry the superscript M. The

Recently, Yeow and Leon{y] adopted an entirely dif- (1) = d*A(1)/dA* within the integral is the unknown fourth
ferent approach to generating derivative spectra. Insteadderivative to be computedy, fo andgo in Eq. (1) are the
of differentiating the spectral data directly they converted unknown first, second and third derivative, respectively, of
the differentiation problem into one of solving an integral A()) evaluated atq. For the purpose of converting spectral
equation of the first kind for the second derivative spec- data into its derivative, Eq1) is treated as an integral equa-
trum and applied Tikhonov regularizatigé] to solve the tion of the first kind to be solved, by Tikhonov regularization,
integral equation for the second derivative. They then inte- simultaneously for the unknown functidir) and the four
grated the second derivative to yield the first and zeroth unknown constantao, ro, fo andgo [8].
(i.e. the original) order derivative spectra. In this method,
noise amplificgtipn is kept.under control by thg user-specified 2.2. Discretized equation
parameter built into the Tikhonov regularization procedure.
In their implementation of Tikhonov regularization, Yeow Following the general notation ifY], the spectral data
and Leong relied on Generalized Cross Validation (G{®Y) ; M _ (4AM _ M
to guide the selection of this regularization/noise suppressionWIII Z?A reprejant)e:t ?ge trr;ia:/seucrtemn"ner; \(/\I/L;veiaﬁoiﬂgz—’

L AR AN, git1s =

parameter. M M M M )
The problem of computing the third and fourth derivatives (' = M,i,; ’2 ‘o Moo 2Ry,). The span of the wave
dength Ay - —A7" and the number of spectral poinié,

of a set of spectral data can also be converted into one o )
solving an integral equation of the first kind for these higher dépend on the range andM resolution of the spectrometer.
Unlike the SG method, th&}" do not have to be uniformly

derivatives. Tikhonov regularization can again be applied to Ml o ; ) )
solve this integral equation for the required higher derivatives. SPaced. The spatlj, — 2! is discretized intdVk uniformly

The main aim of this paper is to assess the performance of thisspaced  points: A© = (A\§ =Y, 45, ..., 45, ... 2%, =
way of obtaining fourth derivative spectra. This will be done A]'\",D) atA= ()Ll'\",D - A'Z‘L")/(NK — 1) distance apart. The val-
by applying Tikhonov regularization to a number of spectral ues of the unknown fourth derivative spect@.) at these
data taken from the literature. The fourth derivative is then discretization points will be denoted by the veclor=
integrated to yield the third and other lower order derivative (k1, ho, k3, ..., hne). TO ensure accurate representation of
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h()), the number of discretization poin¥ is usually set to whereh' = (h1, ho, hs, ..., hng, Ao, 1o, fo, go) is used to
be much larger thaNp, typically Ny =301-801. denote all the unknowns am{ is the matrixB with the col-
In terms of the discretized variables, Kfj) becomes: umn vectorsl, AM — 139, WM — 110)%/2 and (WM —110)%/6
Nk oM )2 added to it to reflect the incorporation 4§, ro, fo andgo
M _ 2o . PR o o e
Aic = Z Bijfj + Ao+ oM — xo)ro + 5 fo intoh’. B !s_the_modlfled tri d|agona_l mgtrlx arlszlng from
=) standard finite difference approximation of:r)/dA< at the
uniformly distributed discretization points,
OM —20)°
g9, fori=12...,N 2a
6 o0 ! D (2a) 1 -2 1 0000
or in matrix notation: 1 -2 1 0 0 0O
= 5
c " ()\M . 1)\0)2 B . ( )
A*=Bh+1A0+ (A —lko)ro—i-ffo S
1 -2 10000
M — 120)° ob
+ 6 80 (2b) The four extra columns of 0 in E@5) are again the conse-

quence of the incorporation dfy, ro, fo and gg, which do
not feature in the smoothness condition, ihtoln terms of
h’andB’:

B is a Np x Ny matrix of known numerical coefficients
that arise from the approximation of the integral in Eq.
(1) by numerical quadrature such as the trapezoidal or the
Simpson’s rulel is a column vector of 1. The unknowns

hi, ha, hs, ..., hyyg, Ao, 7o, fo andgo are required to mini- AC=B'N. (6)
mize:

Np Eq. (6) is needed in the computation of the GCV function
0 Sq — M _ 4Cy2 below
() S1= Z (47" — A7) (3a) AU . : .

i1 Eqg. (4) is the linear algebraic equations that convert

spectral dataAM into the fourth derivative spectruria(i)

and described b. As i()) is known at a large number of closely
Ne=1 /42 2 and uniformly spaced wavelengths it can be integrated suc-
(i) S2= ) <d/\2> (3b) cessively with relative ease to give the third, second and first
j=2 J derivative spectra and a back-calculated versidft.) of the

Condition (i) ensures that the computed spectrum approx- Original spectrum. In the integration operations £9&/o, 7o
imates the measured spectrum closely and condition (i) @1dAo given by Eq/(4) are used as the boundary conditions.
ensures that the fourth derivative spectrum does not showAll the integration will be performed using commercial soft-

spurious fluctuations. ware independent of the computer code developed to solve
for h(1). Thus the comparison of the back-calculatéd.)
2.3. Tikhonov regularization with AM(1) serves as an independent check of the reliabil-

ity of the h(A) given by Eq.(4). Such comparison will be

In Tikhonov regularization, instead of minimizing (i) and Performed in all the examples described below.
(i) separately, alinear combinati®+ S1 + xS2 is minimized
[8]. x is the weighting/regularization parameter that balances
these two requirements. A largdavours (i) the smoothness ~ 2-4 The leaving-out-one principle and Generalized
condition while a smally favours (i) the accuracy condi- Cross Validation
tion. The value ofy clearly depends on the noise level in the i ) ]
spectral data, the number of data poiNis and that of dis- GCV that is used to guide the choice pfs based on the
cretization point&V, its numerical value, therefore, does not ' 1€aving-out-one” principlg9]. In principle, the computation
have any physical significance. Methods such as the popu-described by Eq(4) can be repeated, times each time
lar Morozov Principlg8], the practical L-curve methodd 1] leaving out one data point. The optimypis taken to be the
and the statistically based method of Generalized Cross Val-value thatminimizes the sum of squargg) of the difference
idation (GCV)[9] can be used to guide the choice of this between the predicted value and the actual value for each of

parameter. In this investigation, the choiceafiill be based ~ the left out data point. It can be shown that, in the GCV
on GCV. implementation of the “leaving-out-one” principl®(y) is

For anyx, the unknownsiy, ho, ha, ..., hyg, Ao, ro, fo given by[9]:
andgo that minimizer is given by[8]:
(AM — AT (A — A%/Np
(1— Tr[E]/Np)?

W = (B’TB’ + ﬁBTB) TRTAM, @ V= (7)
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Tr[E] denotes the trace of the square maEipknown as the the sum of the following two Gaussian bands:
influence matrix, defined bj@]:

A(A) = 0.293 exp ()L — 277> ’ In2| and
-1 = Vu. —
E=F (B/TB’ + LBTB) ®B)". (8) 8.0065
A4
, - A — 289\ 2
Egs.(4) and(7) together with the definition dB’, B andE A(L) = 0.03exp| — () In2 (9)
allow V(x) to be evaluated and plotted againgt\*. Mini- 3.8851

mization of¥(x) is used to locate the optimun wherea is in nm. These two Gaussian bands are shown as

lighter curvesirfFig. 1(a). This is the spectrum used by Lange
3. Data and results et al.[12] to demonstrate their method for obtaining fourth
derivative spectrum. The disparity in amplitude and close
Eq.(4)will now be used to compute the fourth derivative of ~proximity of the two Gaussian peaks mean that the weaker
anumber of spectral data sets taken from published literature band located at 289 nm is completely masked by the stronger
The experimental conditions of these data can be found in theband at 277 nm. One of the aims of derivative spectroscopy

original papers and will be omitted here. is to expose such a hidden peak.
The fourth derivative of the spectral dateHig. 1(a) given
3.1. A synthesized spectrum of two Gaussian bands by Eq.(4) is shown as a dark curve #ig. 1(b). For com-

parison, the exact fourth derivative obtained by analytical
The discrete points inFig. 1(a) represent a sim- differentiation of Eq.(9) is shown as a lighter curve on the
ulated UV absorption spectrum over the wavelength same plot. The two derivative spectra are in very close agree-
265 nm=< 1 <295 nmwithAxr =0.5nm. Thisis generated by ment so much so that the analytical curve has to be thickened

Fig. 1. Synthetic UV spectra. (a) Absorption specikaExact spectral data based on @), lighter curves: constituent Gaussian bands, continuous curves:
back-calculated from Ed4). (b) Fourth derivative spectra. Continuous curve: from @. thick lighter curve: exact fourth derivative. (c) Third derivative
spectra. Continuous curve: back-calculated from @Y. thick lighter curve: exact third derivative. (d) The GCV function used to guide the selectign of
showing the optimum value at arounfia* ~ 7.5x 10-15,
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for it to show up. It can also be seen that the fourth deriva- of obtaining the fourth derivative compared to that for obtain-

tive spectrum has succeeded in revealing the location of theing the second derivative as reported by Yeow and L§@hg

two Gaussian peaks. The spectrum back-calculated from the

fourth derivative given by Eq4) is shown as a continuous  3.2. UV absorption spectrum of papaverine

curve inFig. 1(a) and is in very good agreement with the hydrochloride

original spectral data. The exact location of the two Gaussian

peaks can be determined by the zero-crossing points of the The discrete pointsiRig. 2(a) are the tabulated absorption

back-calculated third derivative spectrum showirig. 1(c) spectral points for a T@®moll~1 papaverine hydrochlo-

as a dark curve. For comparison, the analytical third deriva- ride solution[13]. These data span the wavelength range

tive is shown as a lighter curve in the same plot. 206.5nm< A <264 nm at the interval oAXx =1 nm except
The GCV function used to determine the optimum for the first data point wherai =0.5nm. Yeow and Leong

x for the synthetic spectrum is shown iRig. 1(d). [7] used this spectrum to demonstrate their Tikhonov-based

xOpt/A"'%?.Sx 1015, Spectral data are converted into a procedure for obtaining second derivative spectrum.

dimensionless form prior to applying E@), hence the/A* The fourth derivative of these spectral data given directly

shown here is in dimensionless form. As mentioned above, by Eq. (4) is shown as a continuous curvekig. 2(b). For

no physical significance should be read into this particular comparison the fourth derivative spectrum given by the SG

value. It is noticed that, in most of the examples consid- method is shown as filled squares on the same plot. In this

ered in this paper, the optimugiA* varies from 3.5« 10-12 implementation of the SG method sixth order polynomials

to 3.5x 10~1°. In order to cope withy/A* of this order of with 15 regression points (i.e. 7 points on either side) at

magnitude it was necessary to perform the computation in AL =1nm apart were used. The large number of regression

extended precision, typically most numbers are kept to 16 points means the span of wavelength covered by the SG-

decimal points. This greatly increased the computation costbased spectrum is reduced by 7 points on each end. And
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Fig. 2. UV spectra of papaverine hydrochloride. (a) Absorption spe&tr8pectral data from Lanf.3], continuous curve: back-calculated from E4). (b)
Fourth derivative spectr@: Sixth order SG method, continuous curve: from Ej. (c) Third derivative spectr@: Sixth order SG method, continuous curve:
from Eq.(4).
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as expected, the SG spectrum is significantly more noisy ment is furthered improved when the corresponding second
than that given by Eq(4). They are, however, in satisfac- and first derivative spectra and the back-calculated origi-
tory agreement in terms of the location and amplitude of all nal spectra are compared. For example, the back-calculated
the main turning points. The order of polynomials and the spectrum based on Tikhonov regularization is shown as a
number of regression points used in the SG method werecontinuous curve ifig. 2(a). The corresponding curve based
determined by a trial-and-error process. For example if 13 on the SG method is essentially indistinguishable from this
instead of 15 regression points were used with the sixth ordercurve and from the original spectral data. For clarity, the SG
polynomials it was found that the resulting fourth deriva- spectrum is not shown.
tive is considerably more noisy compared to that given by
Eq. (4). Conversely if 17 regression points were used the 3.3. UV absorption cross-section of bromofluorobutene
derivative curve is over smoothed and this is reflected by
a reduction in the height of the amplitude of the SG peak  The discrete points iRig. 3(a) are part of the UV absorp-
in the neighbourhood of 255 nm. Similar numerical experi- tion cross-section data of 2-bromo-3-3-4-4-4-pentafluoro-
mentation were also performed using lower and higher order butene-1 reported by Orkin et §1.4]. These data points are
polynomials. at a uniform interval ofAAx =0.5nm apart. They are again
The back-integrated third derivative spectrum for the the data used by Yeow and Leofi to demonstrate their
papaverine hydrochloride solution is shownHig. 2(c) as method for computing second derivative.
a continuous curve. The corresponding derivative given by  The fourth derivative spectra generated by @jand by
sixth order SG with 15 regression points is shown as discretethe SG method are shown kig. 3(b). In this case, the SG
points. The two third order derivative spectra are in closer method is based on eighth order polynomials with 19 regres-
agreement than the fourth derivativesig. 2(b). The agree-  sion points atAx =0.5nm apart. Following the procedure

Fig. 3. UV absorption of 2-bromo-3-3-4-4-4-pentafluoro-butene-1. (a) Absorption cross-sactieasured spectral data from Orkin et[d4], continuous
curve: from Eq.(4). (b) Fourth derivative spectrll: Eighth order SG method, continuous curve: from . (c) Third order derivative spectrll: Eighth
order SG method, continuous curve: from E4).
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in the previous example, the corresponding third derivative This constitutes a critical test of the Tikhonov regularization
spectra by these two different methods are shovirign3(c). procedure.

The back-calculated spectra based on Tikhonov regulariza- The two fourth derivative spectra based on E4). are
tion is shown as a continuous curvehig. 3(a). All these shown inFig. 4(b). The relatively simple shape of the,Cl
plots indicate that the results generated by@yand by the spectrum allows Hubinger and NE&5] to use the following
SG method are in acceptable agreement. Without knowledgeexpression:

of the expected spectral behaviour of the fluorobromoalkene

in guestion, it is not possible to interpret the peaks in the (1) = 2,55 x 10~ exp! —86.6In 339.5\12
computed derivative spectra. - ' A

3.4. Absorption spectra of molecular chlorine 18.72x 1021 exp{ 800 [In (40}\6,5)} 2} (10)

Seery and Brittofil5] and Hubinger and Ng&6] reported
the absorption spectrum of molecular chlorine at 208 to describe their measured absorption cross-section. In this
Their data, plotted as absorption cross-sections, are showrexpressiong is in cn? molecule’! andx is in nm. The ana-
as discrete points iRig. 4(a)[17]. These two set of spectral lytical fourth derivative spectrum obtained by differentiating
data, covering slightly different spans of wavelength, are in this expression is shown as a lighter curv€&ig. 4(b). Apart
good agreementAr =10 nm for both data sets. E(4) is from the two ends, all the fourth derivative spectra in this fig-
used to convert these two data sets into fourth derivative sep-ure are in acceptable agreement. In particular the two fourth
arately. The aim here is to test whether E).is capable of derivative spectra given by E@4) are in closer agreement
converting two nearby spectra into nearby fourth derivatives. than with the analytical result. The small number of spectral

Fig. 4. UV spectrum of Gl (a) Absorption spectrd: Seery and Brittorj15], A: Hubinger and Negl6], light thick curve: Eq(10), dark continuous curve:
back-calculated from Ed4) based on data frofii6]. (b) Fourth derivative spectra. Light thick curve: analytical derivative of(E@), continuous dark curve:
from Eq.(4) based on data froif16], dark broken curve: Eq4) based on data froifl5]. (c) Light thick curve: analytical derivative of E¢LO), continuous
dark curve: from Eq(4) based on data frofi 6], dark broken curve: Eq4) based on data froffi5].
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points and the relatively largAi of the data means that it oroalkene data and good agreement is again observed. Since
is not practical to use the SG method to evaluate the fourththe two second derivative spectra are obtained by solving
derivative spectrum. This paucity of data points does not posedifferent integral equations each with its own regularization
a problem for Eq(4). As expected, there is even closer agree- parameter, the agreement achieved can be taken as an indi-
ment between the two third derivative spectra given by Eq. cation that the general computational procedure, particularly
(4) and that given by analytical differentiation of E{.0) the choice ofy based on GCV, is working reliably.
(seeFig. 4(c)). The two back-calculated spectra from gq. In order to ensure that the SG method will lead to a smooth
and that based on E{LO) are essentially indistinguishable fourth derivative spectrum, it was necessary to use sixth or
from one another and only the back-calculated curve basedhigher order polynomials with a large number of regression
on the data of Hubinger and N§ES] is plotted inFig. 4(a). points. This has the undesirable effect of greatly reducing the
span of the wavelength covered by the resulting derivative
spectra. As already mentioned the alternative approach is to
4. Discussion apply the SG method with lower order polynomials twice,
once to obtain the second derivative and then to apply the SG
All the examples considered above indicate that the gen- method a second time to smooth the raw second derivative
eral principle of converting the problem of differentiating Spectrum and to give the third and fourth derivatives with
spectral data into one of solving an integral equation of the reduced noise. Repeated application of the SG method to
first kind can be extended to fourth order derivative spec- Smooth the derivative obtained in a previous step is a widely
tra. The method based on Tikhonov regularization coupled adopted practice even at second derivative I§1/8/19]. A
with GCV can again be applied to solve this integral equa- Similar approach can be adopted in Tikhonov regulariza-
tion. Most of the advantages of this approach observed in tion as an alternative route to fourth derivative spectra. Here
second order derivative spectroscd@y are retained in the ~ Tikhonov regularization, such as that reporteda is first
fourth derivative. These include the general applicability of used to converta set of spectral data into its second derivative.
the method and its ability to keep noise amplification under The second derivatives at the original measurement wave-
control. Unlike the SG method, the method is able to cope lengths are then evaluated and Tikhonov regularization is
with non-uniformly spaced spectral data and again unlike the applied again to compute the second derivative of these sec-
SG method there is no reduction in the span of wavelength ond derivative data to give the desired fourth derivative. The
covered by the derivative spectra. performance of such an approach has been investigated. The
In their earlier investigation, Yeow and Leofi] applied discrete points ifrig. 6(a) are the second derivative, reported
Tikhonov regularization to solve an integral equation of the in [7], of papaverine hydrochloride at the original measure-
firstkind that gives the second derivative spectra directly. The ment points[13]. Applying their method to these second
second derivative for the papaverine hydrochloride solution derivative spectral points gives the fourth derivative spectrum
they obtained by this method is shown as a lighter curve in shown as a light thick curve ifig. 6(b). For comparison,
Fig. 5. For comparison the second derivative spectrum back-the fourth derivative spectrum given directly by Hg) is
calculated from the fourth derivative iig. 2(b) is shown  shown as a darker curve on the same plot. This is the same
as a dark curve on the same plot. The two second derivativespectrum as that iRig. 2(b). There is very good agreement
spectra are in good agreement. Similar comparison of secondbetween the two fourth derivative spectra. This indirect route
derivative spectra has also been performed with the bromoflu-to fourth derivative has slightly reduced, but not eliminated,
the computational problem associated with the evaluation of
the GCV function. Comparison of the fourth derivatives in
Fig. 6(b), together with the comparisonkig. 5, may have
added further to the confidence in the results given by Eq.
(4), but numerical experimentation on this indirect route to
fourth derivative has not exhibited significant advantage over
the direct route based on E¢,).

As mentioned above, all the GCV functions for fourth
derivative involve numbers that are of the order of 1or
smaller. In order to prevent loss of accuracy, to cope with
number of this magnitude, it is necessary to carry out the
computation to 14-16 decimal points. This slowed down
the computation significantly. This can be partially circum-
vented by rescaling the numbers in the intermediate steps
of Tikhonov regularization with the aim avoiding numbers

Fig. 5. Second derivative of papaverine hydrochloride. Continuous dark thatare vagtly different in magnltgde. This has been.piartlally_
curve: back-calculated from the fourth derivativéig. 2b light thick curve: successful in some of the cases involved. Systematic investi-
second derivative frorfv]. gation of the numerical and computation problems involved
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the spectral behaviour of the constituents in the substance
under investigation. It should also be mentioned that since
the derivative spectra are not very sensitive to small changes
in x, and therefore, fine tuning gfis normally not required.

5. Conclusions

Taylor’s series with the remainder term in an integral form
provides an integral equation of the first kind for the fourth
derivative of a spectral data set. Tikhonov regularization can
be applied to solve this equation. The method can be applied
to different types of spectral data. GCV provides a means
of locating the appropriatg. The numerical and compu-
tation problems associated with the GCV function for the
fourth derivative will need to be solved if the method is to
be extended to yet higher derivatives. Physical knowledge of
the spectral behaviour of the system under investigation can
be used to guide the choice of this parameter.
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